Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Eye (2022)
1 Altmetric
Metrics details
Diabetic retinopathy (DR) may lead to vision-threatening complications in people living with diabetes mellitus. Decades of research have contributed to our understanding of the pathogenesis of diabetic retinopathy from non-proliferative to proliferative (PDR) stages, the occurrence of diabetic macular oedema (DMO) and response to various treatment options. Multimodal imaging has paved the way to predict the impact of peripheral lesions and optical coherence tomography-angiography is starting to provide new knowledge on diabetic macular ischaemia. Moreover, the availability of intravitreal anti-vascular endothelial growth factors has changed the treatment paradigm of DMO and PDR. Areas of research have explored mechanisms of breakdown of the blood-retinal barrier, damage to pericytes, the extent of capillary non-perfusion, leakage and progression to neovascularisation. However, knowledge gaps remain. From this perspective, we highlight the challenges and future directions of research in this field.
糖尿病视网膜病变 (DR) 可导致糖尿病患者出现威胁视力的并发症。数十年的研究有助于我们了解糖尿病视网膜病变从非增殖期 (NPDR) 到增殖期 (PDR) 的发病机制, 糖尿病黄斑水肿 (DMO) 的发生和对各种治疗方案的反应。多模态成像为视网膜周边病变提供了有力武器, 光学相干断层成像-血管造影 (OCTA) 已经广泛应用于糖尿病黄斑缺血的诊断。此外, 玻璃体内抗血管内皮生长因子 (抗-VEGF) 药物的应用改变了DMO和PDR的治疗模式。在研究领域对血-视网膜屏障破坏, 周细胞损伤, 毛细血管无灌注, 渗漏和新生血管的发生机制进行了阐述。然而, 我们仍然面临着许多未知。本文, 我们强调了这个领域的挑战和未来的发展方向。
This is a preview of subscription content, access via your institution

Subscribe to Journal
Get full journal access for 1 year
111,21 €
only 9,27 € per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.
Article  Google Scholar 
Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.
Article  Google Scholar 
Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23:1496–508.
Article  CAS  Google Scholar 
Gardiner TA, Archer DB, Curtis TM, Stitt AW. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis. Microcirculation. 2007;14:25–38.
Article  Google Scholar 
Kern TS, Engerman RL. Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res. 1995;60:545–9.
Article  CAS  Google Scholar 
Feng Y, Wang Y, Stock O, Pfister F, Tanimoto N, Seeliger MW, et al. Vasoregression linked to neuronal damage in the rat with defect of polycystin-2. PLoS One. 2009;4:e7328.
Article  Google Scholar 
Cogan DG, Kuwabara T. Capillary shunts in the pathogenesis of diabetic retinopathy. Diabetes 1963;12:293–300.
Article  CAS  Google Scholar 
Cunha-Vaz J, Faria de Abreu JR, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975;59:649–56.
Article  CAS  Google Scholar 
Liu Y, Leo LF, McGregor C, Grivitishvili A, Barnstable CJ, Tombran-Tink J. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice. Mol Med. 2012;18:1387–401.
Article  CAS  Google Scholar 
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N. Engl J Med. 2012;366:1227–39.
Article  CAS  Google Scholar 
Lecleire-Collet A, Audo I, Aout M, Girmens J-F, Sofroni R, Erginay A, et al. Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Investig Opthalmology Vis Sci. 2011;52:2861.
Article  Google Scholar 
Luu CD, Szental JA, Lee S-Y, Lavanya R, Wong TY. Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Invest Ophthalmol Vis Sci. 2010;51:482–6.
Article  Google Scholar 
Cunha-Vaz J, Faria De Abreu JR, Campos AJ, Figo GM. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975;59:649–56.
Daley ML, Watzke RC, Riddle MC. Early loss of blue-sensitive color vision in patients with type I diabetes. Diabetes Care. 1987;10:777–81.
Article  CAS  Google Scholar 
Silva KC, Rosales MAB, Biswas SK, Lopes de Faria JB, Lopes de Faria JM. Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 2009;58:1382–90.
Article  CAS  Google Scholar 
Hammes H-P. Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res. 2005;37:39–43.
Article  Google Scholar 
Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab. 2008;10:53–63.
CAS  Google Scholar 
Sohn EH, van Dijk HW, Jiao C, Kok PHBB, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci. 2016;113:E2655–64.
Article  CAS  Google Scholar 
Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 2018;61:1902–12.
Article  Google Scholar 
Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2:e93751.
Article  Google Scholar 
Engerman RL, Kern TS. Experimental galactosemia produces diabetic-like retinopathy. Diabetes 1984;33:97–100.
Article  CAS  Google Scholar 
Kador PF, Akagi Y, Takahashi Y, Ikebe H, Wyman M, Kinoshita JH. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol. 1990;108:1301–9.
Article  CAS  Google Scholar 
Kern TS, Engerman RL. A mouse model of diabetic retinopathy. Arch Ophthalmol. 1996;114:986–90.
Article  CAS  Google Scholar 
Kim K, Kim ES, Kim DG, Yu S-Y. Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography. Acta Diabetol. 2019;56:1275–82.
Article  Google Scholar 
Lim HBin, Shin YIL, Lee MW, Koo H, Lee WH, Kim JY. Ganglion cell – inner plexiform layer damage in diabetic patients: 3-year prospective, longitudinal, observational study. Sci Rep. 2020;10:1470.
Article  CAS  Google Scholar 
Wong K. Defining diabetic retinopathy severity. New York, NY: Springer New York; 2010.
Marques IP, Alves D, Santos T, Mendes L, Santos AR, Lobo C, et al. Multimodal imaging of the initial stages of diabetic retinopathy: different disease pathways in different patients. Diabetes 2019;68:648–53.
Article  CAS  Google Scholar 
Nunes S, Ribeiro L, Lobo C, Cunha-Vaz J. Three different phenotypes of mild nonproliferative diabetic retinopathy with different risks for development of clinically significant macular oedema. Investig Ophthalmol Vis Sci. 2013;54:4595–604.
Article  Google Scholar 
Madeira MH, Marques IP, Ferreira S, Tavares D, Santos T, Santos AR, et al. Retinal neurodegeneration in different risk phenotypes of diabetic retinal disease. Front Neurosci. 2021;15:800004.
Bolinger MT, Antonetti DA. Moving past anti-VEGF: novel therapies for treating diabetic retinopathy. Int J Mol Sci 2016;17:1498.
Article  Google Scholar 
El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab. 2017;122:1–9.
Article  CAS  Google Scholar 
Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135:370.
Article  Google Scholar 
Ribeiro L, Marques IP, Coimbra R, Santos T, Madeira MH, Santos AR, et al. Characterization of one-year progression of risk phenotypes of diabetic retinopathy. Ophthalmol Ther. 2022;11:333–45.
Article  Google Scholar 
Santos T, Warren LH, Santos AR, Marques IP, Kubach S, Mendes LG, et al. Swept-source OCTA quantification of capillary closure predicts ETDRS severity staging of NPDR. Br J Ophthalmol. 2020;106.
Zhang X, Saaddine JB, Chou C-F, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA 2010;304:649–56.
Article  CAS  Google Scholar 
Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early treatment diabetic retinopathy study research Group. Ophthalmology 1991;98:766–85.
Google Scholar 
Flynn HW, Chew EY, Simons BD, Barton FB, Remaley NA, Ferris FL. Pars plana vitrectomy in the Early Treatment Diabetic Retinopathy Study. ETDRS report number 17. The early treatment diabetic retinopathy Study Research Group. Ophthalmology 1992;99:1351–7.
Article  Google Scholar 
Early Treatment Diabetic Retinopathy Study Research Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology. 1991;98:786–806.
Article  Google Scholar 
Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular oedema disease severity scales. Ophthalmology. 2003;110:167.
Article  Google Scholar 
Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, Cleary P, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl J Med. 2000;342:381–9.
Article  Google Scholar 
Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998;317:703–13.
Google Scholar 
Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, et al. Comparison of early treatment diabetic retinopathy study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol. 2019;137:65–73.
Article  Google Scholar 
Witmer AN, Vrensen GFJM, Van Noorden CJF, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29.
Article  CAS  Google Scholar 
Martinho AC-V, Marques IP, Messias AL, Santos T, Madeira MH, Sousa DC, et al. Ocular and systemic risk markers for development of macular oedema and proliferative retinopathy in type 2 diabetes: a 5-year longitudinal study. diabetes care. 2020;44:e12–e14.
Cunha-Vaz J, Santos T, Ribeiro L, Alves D, Marques I, Goldberg M. OCT-leakage: a new method to identify and locate abnormal fluid accumulation in diabetic retinal oedema. Invest Ophthalmol Vis Sci. 2016;57:6776–83.
Article  Google Scholar 
Cunha-Vaz J, Santos T, Alves D, Marques I, Neves C, Soares M, et al. Agreement between OCT leakage and fluorescein angiography to identify sites of alteration of the blood-retinal barrier in diabetes. Ophthalmol Retina. 2017;1:395–403.
Sun JK, Radwan SH, Soliman AZ, Lammer J, Lin MM, Prager SG, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes 2015;64:2560–70.
Article  CAS  Google Scholar 
Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer’s disease. Neurobiol Dis. 2009;35:128–40.
Article  CAS  Google Scholar 
Težak Ž, Kondratovich MV, Mansfield E. US FDA and personalized medicine: in vitro diagnostic regulatory perspective. Per Med. 2010;7:517–30.
Article  Google Scholar 
Moshfeghi A, Garmo V, Sheinson D, Ghanekar A, Abbass I. Five-year patterns of diabetic retinopathy progression in US clinical practice. Clin Ophthalmol. 2020;14:3651–9.
Article  Google Scholar 
Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 2001;44:156–63.
Article  CAS  Google Scholar 
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. IX. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol (Chic, Ill 1960). 1989;107:237–43.
Article  CAS  Google Scholar 
Cikamatana L, Mitchell P, Rochtchina E, Foran S, Wang JJ. Five-year incidence and progression of diabetic retinopathy in a defined older population: the Blue Mountains Eye Study. Eye (Lond). 2007;21:465–71.
Article  CAS  Google Scholar 
Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl J Med. 1994;331:1480–7.
Article  CAS  Google Scholar 
Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Ranibizumab for diabetic macular oedema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012;119:789–801.
Article  Google Scholar 
Korobelnik J-F, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, et al. Intravitreal aflibercept for diabetic macular oedema. Ophthalmology 2014;121:2247–54.
Article  Google Scholar 
Ashraf M, Shokrollahi S, Salongcay RP, Aiello LP, Silva PS. Diabetic retinopathy and ultrawide field imaging. Semin Ophthalmol. 2020;35:56–65.
Article  Google Scholar 
Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 2012;32:785–91.
Article  Google Scholar 
Choudhry N, Duker JS, Freund KB, Kiss S, Querques G, Rosen R, et al. Classification and guidelines for widefield imaging: recommendations from the International Widefield Imaging Study Group. Ophthalmol Retin. 2019;3:843–9.
Article  Google Scholar 
Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology 2015;122:949–56.
Article  Google Scholar 
Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular oedema. Invest Ophthalmol Vis Sci. 2015;56:1482–92.
Article  Google Scholar 
Chandra S, Sheth J, Anantharaman G, Gopalakrishnan M. Ranibizumab-induced retinal reperfusion and regression of neovascularization in diabetic retinopathy: an angiographic illustration. Am J Ophthalmol Case Rep. 2018;9:41–4.
Article  Google Scholar 
Levin AM, Rusu I, Orlin A, Gupta MP, Coombs P, D’Amico DJ, et al. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections. Clin Ophthalmol. 2017;11:193–200.
Article  CAS  Google Scholar 
Reddy RK, Pieramici DJ, Gune S, Ghanekar A, Lu N, Quezada-Ruiz C, et al. Efficacy of ranibizumab in eyes with diabetic macular oedema and macular nonperfusion in RIDE and RISE. Ophthalmology 2018;125:1568–74.
Article  Google Scholar 
Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular oedema. Ophthalmology 2014;121:1783–9.
Article  Google Scholar 
Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 2015;35:2353–63.
Article  Google Scholar 
Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 2015;46:796–805.
Article  Google Scholar 
Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160:35–44.
Article  Google Scholar 
Yang JY, Wang Q, Yan YN, Zhou WJ, Wang YX, Wu SL, et al. Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258:513–20.
Article  CAS  Google Scholar 
Russell JF, Shi Y, Hinkle JW, Scott NL, Fan KC, Lyu C, et al. Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol Retina. 2019;3:350–61.
Article  Google Scholar 
Garcia JMB, de B, Lima TT, Louzada RN, Rassi AT, Isaac DLC, et al. Diabetic macular ischaemia diagnosis: comparison between optical coherence tomography angiography and fluorescein angiography. J Ophthalmol. 2016;2016:3989310.
Article  Google Scholar 
Russell JF, Flynn HW, Sridhar J, Townsend JH, Shi Y, Fan KC, et al. Distribution of diabetic neovascularization on ultra-widefield fluorescein angiography and on simulated widefield OCT angiography. Am J Ophthalmol. 2019;207:110–20.
Article  Google Scholar 
Couturier A, Rey P-A, Erginay A, Lavia C, Bonnin S, Dupas B, et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and oedema treated with anti-vascular endothelial growth factor. Ophthalmology 2019;126:1685–94.
Article  Google Scholar 
Or C, Sabrosa AS, Sorour O, Arya M, Waheed N Use of OCTA, FA, and ultra-widefield imaging in quantifying retinal ischaemia: a review. Asia Pac J Ophthalmol. 2018:7;46–51.
Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57:5200–6.
Article  Google Scholar 
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402–10.
Article  Google Scholar 
Alyoubi WL, Abulkhair MF, Shalash WM. Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sens (Basel). 2021;21:3704.
Article  Google Scholar 
Ghasemi Falavarjani K, Wang K, Khadamy J, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curr Ophthalmol. 2016;28:57–60.
Article  Google Scholar 
Nderitu P, do Rio JMN, Rasheed R, Raman R, Rajalakshmi R, Bergeles C, et al. Deep learning for gradability classification of handheld, non-mydriatic retinal images. Sci Rep. 2021;11:9469.
Article  CAS  Google Scholar 
Zheng Y, Kwong MT, Maccormick IJC, Beare NAV, Harding SP. A comprehensive texture segmentation framework for segmentation of capillary non-perfusion regions in fundus fluorescein angiograms. PLoS One. 2014;9:e93624.
Article  Google Scholar 
Buchanan CR, Trucco E. Contextual detection of diabetic pathology in wide-field retinal angiograms. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5437–40.
Google Scholar 
Trucco E, Buchanan CR, Aslam T, Dhillon B. Contextual detection of ischemic regions in ultra-wide-field-of-view retinal fluorescein angiograms. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6740–3.
CAS  Google Scholar 
Zhao Y, MacCormick IJC, Parry DG, Leach S, Beare NAV, Harding SP, et al. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy. Sci Rep. 2015;5:10425.
Article  CAS  Google Scholar 
Jiang A, Srivastava S, Figueiredo N, Babiuch A, Hu M, Reese J, et al. Repeatability of automated leakage quantification and microaneurysm identification utilising an analysis platform for ultra-widefield fluorescein angiography. Br J Ophthalmol. 2020;104:500–3.
Article  Google Scholar 
Ehlers JP, Wang K, Vasanji A, Hu M, Srivastava SK. Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography. Br J Ophthalmol. 2017;101:696–9.
Article  Google Scholar 
Ehlers JP, Jiang AC, Boss JD, Hu M, Figueiredo N, Babiuch A, et al. Quantitative ultra-widefield angiography and diabetic retinopathy severity: an assessment of panretinal leakage index, ischemic index and microaneurysm count. Ophthalmology 2019;126:1527–32.
Article  Google Scholar 
Sim DA, Keane PA, Rajendram R, Karampelas M, Selvam S, Powner MB, et al. Patterns of peripheral retinal and central macula ischaemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol. 2014;158:144–53.
Article  Google Scholar 
Wessel MM, Nair N, Aaker GD, Ehrlich JR, D’Amico DJ, Kiss S. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular ooedema. Br J Ophthalmol. 2012;96:694–8.
Article  Google Scholar 
Nicholson L, Ramu J, Chan EW, Bainbridge JW, Hykin PG, Talks SJ, et al. Retinal nonperfusion characteristics on ultra-widefield angiography in eyes with severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy. JAMA Ophthalmol. 2019;137:626–31.
Article  Google Scholar 
Wykoff CC, Nittala MG, Zhou B, Fan W, Velaga SB, Lampen SIR, et al. Intravitreal aflibercept for retinal nonperfusion in proliferative diabetic retinopathy: outcomes from the randomized RECOVERY Trial. Ophthalmol Retin. 2019;3:1076–86.
Article  Google Scholar 
Rabiolo A, Parravano M, Querques L, Cicinelli MV, Carnevali A, Sacconi R, et al. Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol. 2017;11:803–7.
Article  Google Scholar 
Silva PS, Dela Cruz AJ, Ledesma MG, van Hemert J, Radwan A, Cavallerano JD, et al. Diabetic retinopathy severity and peripheral lesions are associated with nonperfusion on ultrawide field angiography. Ophthalmology 2015;122:2465–72.
Article  Google Scholar 
Figueiredo N, Srivastava SK, Singh RP, Babiuch A, Sharma S, Rachitskaya A, et al. Longitudinal panretinal leakage and ischemic indices in retinal vascular disease after aflibercept therapy: the PERMEATE Study. Ophthalmol Retin. 2020;4:154–63.
Article  Google Scholar 
Bonnin S, Dupas B, Lavia C, Erginay A, Dhundass M, Couturier A, et al. Anti-vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina 2019;39:426–34.
Article  CAS  Google Scholar 
Diabetic Retinopathy Clinical Research Network, Elman MJ, Qin H, Aiello LP, Beck RW, Bressler NM, et al. Intravitreal ranibizumab for diabetic macular oedema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology. 2012;119:2312–8.
Article  Google Scholar 
Liu Y, Shen J, Fortmann SD, Wang J, Vestweber D, Campochiaro PA. Reversible retinal vessel closure from VEGF-induced leukocyte plugging. JCI insight. 2017;2:e95530.
Wykoff CC, Eichenbaum DA, Roth DB, Hill L, Fung AE, Haskova Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retin. 2018;2:997–1009.
Article  Google Scholar 
Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM, et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol. 2017;135:558–68.
Article  Google Scholar 
Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular oedema. Ophthalmology 2010;117:1064–77.
Article  Google Scholar 
Rajendram R, Fraser-Bell S, Kaines A, Michaelides M, Hamilton RD, Esposti SD, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular oedema: 24-month data: report 3. Arch Ophthalmol (Chic, Ill 1960). 2012;130:972–9.
CAS  Google Scholar 
Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Long-term outcomes of ranibizumab therapy for diabetic macular oedema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013;120:2013–22.
Article  Google Scholar 
Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, et al. Intravitreal aflibercept for diabetic macular oedema: 100-week results from the VISTA and VIVID studies. Ophthalmology 2015;122:2044–52.
Article  Google Scholar 
Elman MJ, Bressler NM, Qin H, Beck RW, Ferris FL, Friedman SM, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular oedema. Ophthalmology 2011;118:609–14.
Article  Google Scholar 
Bressler SB, Qin H, Melia M, Bressler NM, Beck RW, Chan CK, et al. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;131:1033–40.
Article  CAS  Google Scholar 
Ip MS, Domalpally A, Hopkins JJ, Wong P, Ehrlich JS. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130:1145–52.
Article  CAS  Google Scholar 
Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular oedema. Ophthalmology 2011;118:615–25.
Article  Google Scholar 
Heier JS, Korobelnik J-F, Brown DM, Schmidt-Erfurth U, Do DV, Midena E, et al. Intravitreal aflibercept for diabetic macular oedema: 148-week results from the VISTA and VIVID studies. Ophthalmology 2016;123:2376–85.
Article  Google Scholar 
Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 2015;314:2137–46.
Article  Google Scholar 
Bressler SB, Beaulieu WT, Glassman AR, Gross JG, Jampol LM, Melia M, et al. Factors associated with worsening proliferative diabetic retinopathy in eyes treated with panretinal photocoagulation or ranibizumab. Ophthalmology 2017;124:431–9.
Article  Google Scholar 
Diabetic Retinopathy Clinical Research Network*. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous haemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol 2013;131:283–93.
Article  Google Scholar 
Sivaprasad S, Prevost AT, Vasconcelos JC, Riddell A, Murphy C, Kelly J, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017;389:2193–203.
Article  CAS  Google Scholar 
Halim S, Nugawela M, Chakravarthy U, Peto T, Madhusudhan S, Lenfestey P, et al. Topographical response of retinal neovascularization to aflibercept or panretinal photocoagulation in proliferative diabetic retinopathy: post hoc analysis of the CLARITY Randomized Clinical Trial. JAMA Ophthalmol. 2021;139:501–7.
Article  Google Scholar 
Figueira J, Fletcher E, Massin P, Silva R, Bandello F, Midena E, et al. EVICR.net Study Group. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS Study). Ophthalmology. 2018;125:691–700.
Article  Google Scholar 
Lang GE, Stahl A, Voegeler J, Quiering C, Lorenz K, Spital G, et al. Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy – the PRIDE study. Acta Ophthalmol. 2019; https://doi.org/10.1111/aos.14312.
Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, et al. Effect of intravitreous anti-vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: the protocol W randomized clinical trial. JAMA Ophthalmol. 2021;139:701–12.
Article  Google Scholar 
Brown DM, Wykoff CC, Boyer D, Heier JS, Clark WL, Emanuelli A, et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy: results from the PANORAMA randomized clinical trial. JAMA Ophthalmol. 2021;139:946–55.
Article  Google Scholar 
Sen S, Ramasamy K, Sivaprasad S. Indicators of visual prognosis in diabetic macular ooedema. J Pers Med. 2021;11:449.
Cheung CMG, Fawzi A, Teo KY, Fukuyama H, Sen S, Tsai W-S, et al. Diabetic macular ischaemia- a new therapeutic target? Prog Retin Eye Res. 2022;89:101033.
Dhoot DS, Baker K, Saroj N, Vitti R, Berliner AJ, Metzig C, et al. Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular oedema: post hoc analyses from VISTA and VIVID. Ophthalmology 2018;125:51–6.
Article  Google Scholar 
Tadayoni R. Time to call into question the fundus-based evaluation of diabetic retinopathy after intravitreal injections. J Ophthalmic Vis Res. 2020;15:4–6.
Singer M, Liu M, Schlottmann PG, Khanani AM, Hemphill M, Hill L, et al. Predictors of early diabetic retinopathy regression with ranibizumab in the RIDE and RISE clinical trials. Clin Ophthalmol. 2020;14:1629–39.
Article  CAS  Google Scholar 
Williamson L, Starnes D, Taylor C, Levy R, Kasetty V, Rex P, et al. Wide-field fluorescein angiographic-guided aflibercept (WFFAGA) monotherapy for proliferative diabetic retinopathy (PDR). Invest Ophthalmol Vis Sci. 2019;60:5334.
Google Scholar 
Talks SJ, Manjunath V, Steel DHW, Peto T, Taylor R. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol. 2015;99:1606–9.
Article  Google Scholar 
Heier JS, Singh RP, Wykoff CC, Csaky KG, Lai TYY, Loewenstein A, et al. The angiopoietin/tie pathway in retinal vascular diseases: a review. Retina. 2021;41:1–19.
Article  CAS  Google Scholar 
Wykoff CC, Abreu F, Adamis AP, Basu K, Eichenbaum DA, Haskova Z, et al. YOSEMITE and RHINE Investigators. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022;399:741–55.
Article  CAS  Google Scholar 
Download references
This manuscript was prepared for the European Vision Institute.
SS and SSen are funded by UKRI Global Challenge Research Fund [MR/P027881/1]. SS is supported by the NIHR Biomedical Research Centre at Moorfields Eye Hospital National Health Service (NHS) Foundation Trust and the University College London Institute of Ophthalmology. José Cunha-Vaz is funded by AIBILI and Fundo de Inovação Tecnologia e Economia Circular (FITEC)—Programa Interface (FITEC/CIT/2018/2).
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
Sobha Sivaprasad
Department of Retina and Vitreous, Aravind Eye Hospital and Aravind Medical Research Foundation, Madurai, India
Sagnik Sen
Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom
Sagnik Sen
AIBILI – Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
José Cunha-Vaz
University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
José Cunha-Vaz
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
You can also search for this author in PubMed Google Scholar
SS, SSen and JCV – concept, writing, proofing
Correspondence to Sobha Sivaprasad.
The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
Sivaprasad, S., Sen, S. & Cunha-Vaz, J. Perspectives of diabetic retinopathy—challenges and opportunities. Eye (2022). https://doi.org/10.1038/s41433-022-02335-5
Download citation
Received: 08 March 2022
Revised: 16 September 2022
Accepted: 25 November 2022
Published: 09 December 2022
DOI: https://doi.org/10.1038/s41433-022-02335-5
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement
Eye (Eye) ISSN 1476-5454 (online) ISSN 0950-222X (print)
© 2022 Springer Nature Limited

source

By admin

Leave a Reply

Your email address will not be published. Required fields are marked *